Copied to
clipboard

G = D526C22order 416 = 25·13

4th semidirect product of D52 and C22 acting via C22/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.6D26, C52.15D4, D526C22, C52.12C23, Dic265C22, D4⋊D135C2, (D4×C26)⋊2C2, (C2×D4)⋊2D13, C134(C8⋊C22), D4.D135C2, (C2×C4).17D26, C26.45(C2×D4), (C2×C26).39D4, D525C23C2, C52.4C46C2, C132C83C22, C4.16(C13⋊D4), (C2×C52).30C22, (D4×C13).6C22, C4.12(C22×D13), C22.10(C13⋊D4), C2.9(C2×C13⋊D4), SmallGroup(416,153)

Series: Derived Chief Lower central Upper central

C1C52 — D526C22
C1C13C26C52D52D525C2 — D526C22
C13C26C52 — D526C22
C1C2C2×C4C2×D4

Generators and relations for D526C22
 G = < a,b,c,d | a52=b2=c2=d2=1, bab=a-1, ac=ca, dad=a27, cbc=a26b, dbd=a39b, cd=dc >

Subgroups: 392 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C13, M4(2), D8, SD16, C2×D4, C4○D4, D13, C26, C26, C8⋊C22, Dic13, C52, D26, C2×C26, C2×C26, C132C8, Dic26, C4×D13, D52, C13⋊D4, C2×C52, D4×C13, D4×C13, C22×C26, C52.4C4, D4⋊D13, D4.D13, D525C2, D4×C26, D526C22
Quotients: C1, C2, C22, D4, C23, C2×D4, D13, C8⋊C22, D26, C13⋊D4, C22×D13, C2×C13⋊D4, D526C22

Smallest permutation representation of D526C22
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 56)(9 55)(10 54)(11 53)(12 104)(13 103)(14 102)(15 101)(16 100)(17 99)(18 98)(19 97)(20 96)(21 95)(22 94)(23 93)(24 92)(25 91)(26 90)(27 89)(28 88)(29 87)(30 86)(31 85)(32 84)(33 83)(34 82)(35 81)(36 80)(37 79)(38 78)(39 77)(40 76)(41 75)(42 74)(43 73)(44 72)(45 71)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)
(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)
(1 40)(2 15)(3 42)(4 17)(5 44)(6 19)(7 46)(8 21)(9 48)(10 23)(11 50)(12 25)(13 52)(14 27)(16 29)(18 31)(20 33)(22 35)(24 37)(26 39)(28 41)(30 43)(32 45)(34 47)(36 49)(38 51)(53 79)(55 81)(57 83)(59 85)(61 87)(63 89)(65 91)(67 93)(69 95)(71 97)(73 99)(75 101)(77 103)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64), (53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,40)(2,15)(3,42)(4,17)(5,44)(6,19)(7,46)(8,21)(9,48)(10,23)(11,50)(12,25)(13,52)(14,27)(16,29)(18,31)(20,33)(22,35)(24,37)(26,39)(28,41)(30,43)(32,45)(34,47)(36,49)(38,51)(53,79)(55,81)(57,83)(59,85)(61,87)(63,89)(65,91)(67,93)(69,95)(71,97)(73,99)(75,101)(77,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64), (53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,40)(2,15)(3,42)(4,17)(5,44)(6,19)(7,46)(8,21)(9,48)(10,23)(11,50)(12,25)(13,52)(14,27)(16,29)(18,31)(20,33)(22,35)(24,37)(26,39)(28,41)(30,43)(32,45)(34,47)(36,49)(38,51)(53,79)(55,81)(57,83)(59,85)(61,87)(63,89)(65,91)(67,93)(69,95)(71,97)(73,99)(75,101)(77,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,56),(9,55),(10,54),(11,53),(12,104),(13,103),(14,102),(15,101),(16,100),(17,99),(18,98),(19,97),(20,96),(21,95),(22,94),(23,93),(24,92),(25,91),(26,90),(27,89),(28,88),(29,87),(30,86),(31,85),(32,84),(33,83),(34,82),(35,81),(36,80),(37,79),(38,78),(39,77),(40,76),(41,75),(42,74),(43,73),(44,72),(45,71),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64)], [(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104)], [(1,40),(2,15),(3,42),(4,17),(5,44),(6,19),(7,46),(8,21),(9,48),(10,23),(11,50),(12,25),(13,52),(14,27),(16,29),(18,31),(20,33),(22,35),(24,37),(26,39),(28,41),(30,43),(32,45),(34,47),(36,49),(38,51),(53,79),(55,81),(57,83),(59,85),(61,87),(63,89),(65,91),(67,93),(69,95),(71,97),(73,99),(75,101),(77,103)]])

71 conjugacy classes

class 1 2A2B2C2D2E4A4B4C8A8B13A···13F26A···26R26S···26AP52A···52L
order1222224448813···1326···2626···2652···52
size1124452225252522···22···24···44···4

71 irreducible representations

dim111111222222244
type++++++++++++
imageC1C2C2C2C2C2D4D4D13D26D26C13⋊D4C13⋊D4C8⋊C22D526C22
kernelD526C22C52.4C4D4⋊D13D4.D13D525C2D4×C26C52C2×C26C2×D4C2×C4D4C4C22C13C1
# reps1122111166121212112

Matrix representation of D526C22 in GL4(𝔽313) generated by

5814000
25625500
22199286175
2902296527
,
22199286175
563523784
5814000
1656115457
,
1000
0100
003120
1032600312
,
12400
031200
0010
103297299312
G:=sub<GL(4,GF(313))| [58,256,221,290,140,255,99,229,0,0,286,65,0,0,175,27],[221,56,58,165,99,35,140,61,286,237,0,154,175,84,0,57],[1,0,0,103,0,1,0,260,0,0,312,0,0,0,0,312],[1,0,0,103,24,312,0,297,0,0,1,299,0,0,0,312] >;

D526C22 in GAP, Magma, Sage, TeX

D_{52}\rtimes_6C_2^2
% in TeX

G:=Group("D52:6C2^2");
// GroupNames label

G:=SmallGroup(416,153);
// by ID

G=gap.SmallGroup(416,153);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,103,218,188,579,159,69,13829]);
// Polycyclic

G:=Group<a,b,c,d|a^52=b^2=c^2=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^27,c*b*c=a^26*b,d*b*d=a^39*b,c*d=d*c>;
// generators/relations

׿
×
𝔽